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Abstract

Gross primary production (GPP), separated from flux tower measurements of net
ecosystem exchange (NEE) of CO2, is used increasingly to validate process-based
simulators and remote sensing-derived estimates of simulated GPP at various time
steps. Proper validation should include the uncertainty associated with this separation5

at different time steps. This can be achieved by using a Bayesian framework. In this
study, we estimated the uncertainty in GPP at half hourly time steps. We used a non-
rectangular hyperbola (NRH) model to separate GPP from flux tower measurements
of NEE at the Speulderbos forest site, The Netherlands. The NRH model included the
variables that influence GPP, in particular radiation, and temperature. In addition, the10

NRH model provided a robust empirical relationship between radiation and GPP by
including the degree of curvature of the light response curve. Parameters of the NRH
model were fitted to the measured NEE data for every 10-day period during the grow-
ing season (April to October) in 2009. Adopting a Bayesian approach, we defined the
prior distribution of each NRH parameter. Markov chain Monte Carlo (MCMC) simula-15

tion was used to update the prior distribution of each NRH parameter. This allowed us
to estimate the uncertainty in the separated GPP at half-hourly time steps. This yielded
the posterior distribution of GPP at each half hour and allowed the quantification of un-
certainty. The time series of posterior distributions thus obtained allowed us to estimate
the uncertainty at daily time steps. We compared the informative with non-informative20

prior distributions of the NRH parameters. The results showed that both choices of prior
produced similar posterior distributions GPP. This will provide relevant and important
information for the validation of process-based simulators in the future. Furthermore,
the obtained posterior distributions of NEE and the NRH parameters are of interest for
a range of applications.25
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1 Introduction

Net ecosystem exchange (NEE) is a terrestrial component of the global carbon cycle.
It is the exchange of CO2 between the terrestrial ecosystem and the atmosphere. The
measurement of NEE by the eddy covariance technique is well-established (Baldocchi,
2003). Specifically, NEE is the balance between the CO2 released by the ecosystem5

respiration (Reco) and the gross CO2 assimilated via photosynthesis. The fraction of
carbon in the assimilated CO2 is the gross primary production (GPP). Estimates of
GPP, which is partitioned from NEE, provides information about the physiological pro-
cesses that contribute to NEE (Aubinet et al., 2012). Measured NEE data are used to
validate the NEE that is simulated by ecosystem process-based simulators such as10

BIOME-BGC (BioGeochemical Cycles) (Thornton, 1998). It is often desirable to val-
idate the simulated component flux independently. This is particularly important for
diagnosing the misrepresentation (overestimation or underestimation) of assimilation
processes in the simulator (Reichstein et al., 2005), which can only be achieved by
comparing the GPP partitioned from NEE data with the simulated one. Furthermore,15

remote sensing derived light use efficiency (LUE) models address the spatial and tem-
poral dynamics of GPP (Running et al., 2004). The reliability of such models at the
regional scale relies on the validation using GPP partitioned from NEE data (Wang
et al., 2010; Li et al., 2013).

Flux partitioning methods (FPM) are used to partition NEE into its component flux20

(GPP and Reco). These methods are based on fitting a non-linear empirical models
to the measured NEE data and other meteorological data in order to estimate the
parameters. The estimated parameters of the non-linear model then used to predict
daytime Reco and GPP. There are two types of FPM: (1) those that use only nighttime
NEE data (2) those that use either daytime NEE data or both daytime and nighttime25

data (Lasslop et al., 2010; Stoy et al., 2006; Aubinet et al., 2012).
A nighttime-based FPM assumes that NEE is equal to Reco (GPP=0 during the

night) and that it varies with air and soil temperature (Richardson et al., 2006).
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A daytime-based FPM assumes that the variation of NEE occurs with photosynthetic
photon flux density (PPFD) and the light response curve (plot of NEE against PPFD)
can be represented by a rectangular hyperbola (RH) model (Ruimy et al., 1995).
Gilmanov et al. (2003) proposed a daytime-based FPM that uses the non-rectangular
hyperbola (NRH) model to incorporate the effect of the degree of curvature (θ) of5

the light response curve (i.e., the convexity of the light response curve as the NEE
and radiation relationship approaches saturation). Further, the light response curve
represented by the NRH model has been found to fit NEE data better than the RH
model (Gilmanov et al., 2003; Aubinet et al., 2012). Lasslop et al. (2010) proposed
a daytime-based FPM using the RH model by incorporating the variation of NEE as10

a function of global radiation, air temperature, and vapor pressure deficit (VPD) be-
cause these affect GPP via stomatal regulation. Recently, Gilmanov et al. (2013) modi-
fied the NRH model by incorporating the effect of VPD and temperature as proposed by
Lasslop et al. (2010). They used PPFD and soil temperature instead of global radiation
and air temperature respectively. This modification incorporates the influence of PPFD,15

air or soil temperature, VPD, and θ by taking advantage of better representation of the
light response curve by comparison to the RH model.

A quantification of uncertainty in partitioned GPP provides an associated credible
interval that can be used for proper implementation of calibration and validation of
a process-based simulator against partitioned GPP (Hagen et al., 2006). The tem-20

poral resolution of process-based simulators may vary from half-hourly to monthly. It
is therefore necessary to quantify uncertainty associated with the partitioned GPP at
half-hourly to monthly time scales. For example, the partitioned GPP and associated
uncertainty at a daily time scale can provide data for the calibration of BIOME-BGC.

In this study, we adopted the NRH model to partition half-hourly GPP from NEE25

data. Previously numerical optimization has been used to estimate a single optimized
values of the model parameters (Gilmanov et al., 2003, 2013). This did not quantify
the uncertainty in half-hourly partitioned GPP. The measurements of half-hourly NEE
are uncertain. Therefore, the optimized parameters are also uncertain (Richardson and
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Hollinger, 2005). Obtaining the underlying probability distribution of the NRH parame-
ters gives a measure of uncertainty in parameters, which can be further propagated
towards the NRH model to estimate uncertainty in partitioned GPP. A Bayesian im-
plementation provides a solution to quantify the uncertainty in model parameters in
the form of probability distributions (Gelman et al., 2013). The Bayesian approach was5

used in other studies to constrain the parameters of process-based simulators by us-
ing either eddy covariance data, biometric data, or both (Du et al., 2015; Minet et al.,
2015; Ricciuto et al., 2008). We applied the Bayesian approach to a different type of
model. We fitted the non-linear empirical NRH model to NEE data and quantified the
uncertainty in NRH parameters to partition GPP with uncertainty.10

The objective of this study was to implement a Bayesian approach to quantify the
uncertainty in half-hourly partitioned GPP using the NRH model given the availability
of half-hourly NEE and other meteorological data. The time series of empirical distri-
butions of half-hourly GPP values also allowed us to estimate the uncertainty in GPP
at daily time steps. Data were available from a flux tower in the central Netherlands15

at the Speulderbos forest. This will provide relevant and important information for the
validation of process-based simulators.

2 Methods

2.1 The non-rectangular hyperbola (NRH) model

NEE is given as:20

NEE = Pa −Reco (1)

where NEE is measured by the eddy covariance technique and Pa is gross CO2 as-
similation. We adopted the sign convention used by ecosystem scientists in which the
exchange of carbon into the system through photosynthesis is considered a positive
flux and loss of carbon through respiration is considered a negative flux.25
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The light response curve is represented using the NRH model (Gilmanov et al.,
2003):

Pa =
1

2θ
×
(
α ·PPFD+Amax −

√
(α ·PPFD+Amax)2 −4α ·Amax ·θ ·PPFD

)
(2)

where α is the apparent quantum yield, Amax is the photosynthetic capacity at light
saturation, and θ is the degree of curvature of the light response curve.5

Gilmanov et al. (2013) modelled ecosystem respiration Reco using the air temper-
ature Ta as a dominant driver according to Van’t-Hoff’s equation in its exponential
form (Thornley and Johnson, 2000):

Reco = r0 ×exp(kTTa) (3)

where r0 and kT are the temperature sensitivity coefficients. Eqs. 2 and 3 are substi-10

tuted in Eq. (1) to obtain the model for net ecosystem exchange NEE:

NEE =
1

2θ
×
(
α ·PPFD+Amax −

√
(α ·PPFD+Amax)2 −4α ·Amax ·θ ·PPFD

)
− r0 ×exp(kTTa) . (4)

Both daytime and nighttime half-hourly NEE, PPFD, and Ta data were used to estimate
the NRH model parameters β = (θ, α, Amax, r0, kT) (Eq. 4). For nighttime data, Eq. (4)15

includes only the respiration term as PPFD is equal to zero during the night. These
estimated parameters, together with half-hourly PPFD, were used in Eq. (2) to calculate
half-hourly Pa. Values of half-hourly GPP were calculated by multiplying Pa by 12/44
(12 is the atomic mass of carbon, and 44 is the atomic mass of CO2). The unit of each
parameter and other variables used in the above equations are shown in Table 1.20
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2.2 Bayesian inference for model parameters

Bayesian inference treats all parameters as random variables (Gelman et al., 2013).
Bayes rule is given as

p(β|y) =
p(y|β)p(β)

p(y)
∝ likelihood×prior (5)

where p(β) is the prior distribution, representing the prior understanding of uncertainty5

in the model parameters values before the observations are taken into account. This
understanding may come from expert judgement or previously published research on
the parameters (Oakley and O’Hagan, 2007; Raj et al., 2014). If no prior knowledge is
available non-informative priors may be used (i.e., a wide prior distribution that conveys
no prior information). The term p(β|y) is the posterior distribution of β after combining10

prior knowledge and data y and represents the uncertainty in β given the data and the
prior. The marginal effect of each parameter p(βi |y), i = 1,2, . . .,n, is the main quantity
of interest, expressing the uncertainty in each parameter separately. The term p(y|β) is
the conditional probability of observing data y given β and is also called the likelihood.
The term p(y) is the probability of observing the data y before observations were taken.15

This acts as the normalising constant that ensures that p(β|y) is a valid probability
distribution that integrates to 1. For most real-world problems it is not possible to write
down analytical solutions for Eq. (5) and it is usual to perform inference using Markov
Chain Monte Carlo (MCMC) simulation (Gelman et al., 2013).

MCMC is a method for conducting inference on p(β|y). It requires evaluation of the20

joint distribution p(y|β)p(β), which represents the dependence structure in the data.
MCMC constructs Markov chains of the parameters space and generates samples
β

(1), β(2), . . .,β(m) of β whose unique stationary distribution is the posterior distribution
of interest p(β|y). The m samples are then used to conduct inference on each βi . For
example the mean, median and 95 % credible interval can all be calculated over these25

m samples. It is usual to construct multiple Markov chains and to assess whether they
converge to the same stationary distribution.
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3 Bayesian inference for the NRH model parameters

3.1 Study area and data

The Speulderbos forest is located at 52◦15′08′′N, 5◦41′25′′ E within a large forested
area in the Netherlands. There is a flux tower within a dense 2.5 ha Douglas fir stand.
The stand was planted in 1962. The vegetation, soil, and climate of this site have been5

thoroughly described elsewhere (Steingrover and Jans, 1994; Su et al., 2009; van Wijk
et al., 2001).

The CSAT3, Cambell Sci, LI7500 LiCor Inc, and CR5000 instruments were installed
in June 2006 and have been maintained, and the data processed (software AltEddy,
Alterra) by C. van der Tol (University of Twente, co-author) and A. Frumau (Energy10

Centre Netherlands). We examined half-hourly NEE data (measured at the flux tower)
for the growing season (April to October) of 2009. NEE data were corrected for storage
of CO2 in the air between the sensor and the ground. The quality of NEE data was
assessed using the Foken classification system, which provides a flag to each half-
hourly NEE datum from 1 through 9 (Foken et al., 2005). Each flag is associated with:15

(a) the range of the steady state condition of the covariance of vertical wind speed
and CO2 concentration of half-hour duration, (b) the range of the integral turbulence
characteristic parameter indicating the developed turbulence; and (c) the range of the
orientation of the sonic anemometer to make sure that the probe is omnidirectional
at the time of measurements. We followed the suggestion of Foken et al. (2005) and20

accepted only those NEE data that were labelled from 1 to 3.
Half-hourly PPFD and Ta from the flux tower were used as variables in Eq. (4).

Gilmanov et al. (2013) proposed to incorporate the effect of VPD by multiplying Eq. (2)
by the VPD-response function, φ, that accounts for the VPD limitation on Pa. The func-
tion φ is set equal to 1 if VPD is below some critical value (VPDcr) that indicates that25

water stress does not affect photosynthesis. Above the critical value (VPD> VPDcr), φ
decreases exponentially with the curvature parameter σVPD, which may vary between
1 and 30 kPa. Low values of σVPD indicate a strong water stress effect, whereas higher

13974

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/13967/2015/bgd-12-13967-2015-print.pdf
http://www.biogeosciences-discuss.net/12/13967/2015/bgd-12-13967-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 13967–14002, 2015

Uncertainty analysis
of gross primary

production

R. Raj et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

values indicate a weak water stress effect. We calculated half-hourly VPD from rela-
tive humidity (RH) using the procedure provided in Monteith and Unsworth (1990). We
found that 90 % of the total half-hourly VPD values in the growing season of 2009 were
less than 1 kPa and 9 % were between 1 kPa and 1.5 kPa. We therefore neglected
the influence of VPD as a limiting factor for the water stress at Speulderbos. This fol-5

lows Körner (1995) and Lasslop et al. (2010) who specified VPDcr = 1. We, therefore,
assumed φ equal to 1.

3.2 Bayesian implementation

We treated Eq. (4) as a non-linear regression problem:

yi =
1

2θ
×
(
α ·PPFDi +Amax −

√
(α ·PPFDi +Amax)2 −4α ·Amax ·θ ·PPFDi

)
10

− r0 ×exp
(
kTTai

)
+εi

= µi − νi +εi (6)

where y is the response variable (NEE), PPFD and Ta are predictor variables and ε is
the residual error. The residual error arose because the model did not perfectly fit the
data. The subscript i indicates a single observation. For brevity we use µi to refer to15

the first term on the RHS and νi to refer to the second term on the RHS.
As is common in regression, we assumed normally distributed errors, hence εi ∼

N(0,σ2) and the likelihood also followed a normal distribution, such that yi ∼ N(µi −
νi ,σ

2). In the above notation, β = (α,Amax,θ,r0,kT)T and the likelihood is p(y|β,σ2),
where y = (y1,y2, . . .,yn)

T for n observations.20

In Bayesian analysis it is usual to refer to precision, which is the inverse of the vari-
ance, hence τe = 1/σ2. No prior information was available for τe so a non-informative
prior was selected. A Gamma distribution with shape and rate parameters equal to
0.001 ensures a non-negative non-informative prior for τe (Lunn et al., 2013).
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We made two choices for the prior distribution for each βi . First, a non-informative
prior was used. Second prior information for each βi was obtained from the literature.
Note that the same non-informative prior for τe was used in both cases. The results for
informative an non-informative priors were compared.

3.2.1 Non-informative prior distributions5

We assumed a normal distribution for each βi with mean equal to 0 and standard
deviation equal to 32, which gives small value of the the precision equal to 0.001 to
make the distribution wide. NRH is a non-linear model and therefore appropriate con-
straints should be imposed to ensure the meaningful values of the prior parameter
distribution (Lunn et al., 2013). Each βi parameter must be positive (Sect. 3.2.2) so10

we truncated the normal distribution on each βi except θ to ensure only positive val-
ues. For θ, we truncated the normal distribution to occur between 0 and 1 by setting
the obvious limit to this parameter (see also item 2 in Sect. 3.2.2). The above choices
ensure wide non-informative prior distributions whilst specifically excluding physically
unrealistic values.15

3.2.2 Informative prior distributions

Below we justify choices for the prior parameters on β.

1. The quantum yield, α, represents the amount of absorbed CO2 per quanta of
absorbed light. Cannell and Thornley (1998) reported that α varies little among
C3 species and has a value from 0.09 to 0.11 and from 0.04 to 0.075 molCO220

(mol quanta)−1 in saturated and ambient CO2 conditions respectively. The typical
value of α equals 0.05 molCO2 (mol quanta)−1 for a C3 species in an ambient
atmosphere (Skillman, 2008; Long et al., 2006; Bonan et al., 2002). Douglas fir
at Speulderbos is a C3 species. We used this information to construct the prior
distribution on α, as follows:25
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– A value of α around 0.05 has the highest probability. The probability de-
creases as the value of α decreases or increases from 0.05 and cannot be
negative. The maximum value that α can attain is 0.11.

– We assumed a normal distribution of α with mean, µα = 0.05, and variance,
σ2
α = (0.015)2 (i.e, standard deviation, σα = 0.015). The choice of mean en-5

sures that the highest probability is assigned to the values around 0.05. The
choice of variance ensures that 99.7 % (µ± 3σα) of α is positive and lies in the
interval between 0 and 0.11. We also truncated 0.3 % of negative α values
from the assumed normal distribution. In the unit of mgCO2 (µmolquanta)−1,
the assumed normal distribution (N(µα = 0.05, σα = 0.015)) is expressed as10

N(0.0022,0.00066) (Fig. 1a).

2. The curvature parameter θ can take values from 0, which reduces Eq. (4) to the
simpler rectangular hyperbola, to 1, which describes the Blackman response of
two intersecting lines (Blackman, 1905). The physiological range for θ has been
observed to be between 0.5 and 0.99 (Ogren, 1993; Cannell and Thornley, 1998).15

A value of θ = 0.9 was recommended by Thornley (2002) and at θ = 0.8 by John-
son et al. (2010) and Johnson (2013). The estimate of θ, as a result of fitting the
NRH model to either measured photosynthesis or NEE data was found to be in
the range of 0.7 to 0.99 (Gilmanov et al., 2010, 2003). These findings for θ indi-
cated that a higher probability should be assigned to the values around 0.8 and20

the probability should approach to zero below 0.5. This means that the distribu-
tion of θ can be assumed to be negatively skewed with Pr(θ < 0.5) approaching
zero and Pr(θ ≈ 0.8) at a maximum. These conditions were modelled using a beta
distribution with shape parameters at 10 and 3 for θ (Fig. 1b).

3. The photosynthetic capacity at light saturation Amax is reached when the pho-25

tosynthesis is Rubisco limited and varies among different tree species (Cannell
and Thornley, 1998). We compiled the prior information on Amax for Douglas fir
species from the literature. Values of Amax were mainly reported for needles,
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whereas the NRH model (Eq. 4) requires Amax values for the canopy. Scaling
Amax from needle to canopy equivalents is not a trivial task as this depends on
the light distribution and the vertical profile of Amax in the canopy. Here we anal-
ysed plateau values of photosynthesis at needle and canopy level with simulations
by a model that takes this into account: the model SCOPE (van der Tol et al.,5

2009). These simulations (not shown) indicated that the relation between the two
plateaus (canopy : needle Amax) increases with leaf area index (LAI) but saturates
at a value of 2.8. The mean value of LAIp at the Speulderbos site high (approx-
imately 9 van Wijk et al., 2000; Steingrover and Jans, 1994) and therefore we
could translate the reported range of Amax values for the Speulderbos (Mohren,10

1987) of 0.26 to 0.52 mgCO2 m−2 s−1 into values of 0.73–1.46 mgCO2 m−2 s−1 for
canopy Amax. van Wijk et al. (2002) reported slightly higher canopy Amax values
of 1.86 and 1.06 mgCO2 m−2 s−1 at the Speulderbos site. The highest and low-
est value for needle Amax for Douglas fir (irrespective of the site) we found in
the literature were 0.097 (canopy Amax = 0.27) and 1.01 mgCO2 m−2 s−1 (canopy15

Amax = 2.8) respectively (Ripullone et al., 2003; Warren et al., 2003; Lewis et al.,
2000). To cover this rather wide range of values, a Gamma distribution with shape
and rate parameters equal to 4 and 2.5 respectively was selected to ensure higher
probabilities are assigned to the values between 1 and 2.5 with decreasing prob-
abilities down to 0 and up to 4.5 (Fig. 1c). The Amax values at Speulderbos are20

well placed in the overall distribution.

4. The parameters for temperature sensitivity kT and Q10 are related as Q10 =
exp(10kT) (Davidson et al., 2006). Q10 is the factor by which respiration (Eq. 3) is
multiplied when temperature increases by 10 ◦C. (Mahecha et al., 2010) carried
out experiments across 60 FLUXNET sites to check the sensitivity of ecosystem25

respiration to air temperature. They suggested that Q10 does not differ among
biomes and is confined to values around 1.4±0.1 (corresponding to kT around
0.034±0.008). Hence kT ≈ 0.034 should have the highest probability of occur-
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rence. Q10 data reported in the supporting material of Mahecha et al. (2010)
showed that that Q10 becomes less frequent as it increases or decreases from
1.4 and attains a highest value of ∼ 2.72 (corresponding to kT = 0.1). To model
these conditions a Gamma prior distribution was chosen with shape and rate pa-
rameters equal to 4 and 120 respectively (Fig. 1d).5

5. The r0 parameter represents the ecosystem respiration at 0 ◦C. We adopted the
following steps to define the prior distribution for r0.

– Mahecha et al. (2010) presented a graph of seasonal variation of ecosystem
respiration at 15 ◦C (Rb) for 60 FLUXNET sites. We extracted the values of Rb
(in g CO2 m−2 day−1) from the graph for those sites that belong to evergreen10

needle leaf forest (ENF). We obtained the values of r0 from Rb using the
following equations:

r0 =
Rb

exp(kT ×15)
(7)

where kT was obtained from Q10 as reported in point 4 above. Site specific
Q10 value is used here. The unit of r0 is converted into mg CO2 m−2 s−1.15

– We identified values of r0 for ENF in the range 0.013 to 0.07 mgCO2 m−2 s−1.
We also identified values of r0 in the range 0.019 to 0.043 at the Loobos
FLUXNET site in the Netherlands (Mahecha et al., 2010), which is close to
Speulderbos. Therefore, we assumed that the most frequent values of r0 at
Speulderbos are in this range. To model these conditions we chose a Beta20

distribution with shape parameters at 2 and 64 (Fig. 1e).

3.3 Bayesian inference of β

We used WinBUGS software version 1.4.3 (Lunn et al., 2000) to implement the
Bayesian full probability models (Eq. 5) for the inference of β. WinBUGS is a window
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based interface of the BUGS (Bayesian Inference Using Gibbs Sampling) software.
This was a joint initiative of the MRC Biostatistics Unit, Cambridge and the Imperial
College School of Medicine, London (Lunn et al., 2013). WinBUGS implements MCMC
methods for Bayesian inference. The major inputs of WinBUGS are: (a) the model file
specifying the definition of the prior distribution of each βi and likelihood function, (b)5

the number of Markov chains to create, (c) the number of iterations for MCMC to carry
out for each Markov chain, (d) the burn-in period for which the MCMC runs are dis-
carded, (e) initial values of each βi for each Markov chain. The burn-in period is the
number of samples after which the Markov chains converge to a stationary distribution.
The post burn-in samples are used to perform inference on the βi s.10

We obtained the posterior distribution of each βi for every 10-day block (total 22
blocks) in the growing season of 2009. The 10-day block was chosen because it was
sufficiently long to ensure a suitably large NEE dataset within the 10-day block but was
short enough that we could observe temporal change between the 10-day blocks. Tem-
poral variation arose due to changes in canopy structure, soil moisture and ecosystem15

nutrient levels (Aubinet et al., 2012). The sample size within a 10-day block was limited
because ∼ 30 % of the data were typically discarded as being of low quality (Foken flag
4 or higher, see Sect. 3.1).

We identified the appropriate length of the burn-in for both informative and non-
informative prior distributions. We calculated the Gelman–Rubin potential scale reduc-20

tion factor (PSRF) diagnostics to evaluate the convergence of the Markov chains for
each βi for the post burn-in period. A detailed explanation of PSRF and the identifica-
tion of the length of the burn-in are given in the Supplement. Based on that analysis
we used three Markov chains with 16 000 and 25 000 iterations for each chain for in-
formative and non-informative prior distributions respectively. We stored the posterior25

samples of each βi and τe for the remaining 30 000 samples (i.e., 10 000 post burn-in
samples for each of three Markov chains). The BUGS code (model file for WinBUGS)
is given in the Supplement.
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3.4 Posterior prediction

To perform prediction for a given PPFD0 and Ta0
, m post burn-in samples of β and σ2

were used as follows:

µ(l )
0 =

1

2θ(l )
×
(
α(l ) ·PPFD0 +A

(l )
max −

√
(α(l ) ·PPFD0 +A

(l )
max)2 −4α(l ) ·A(l )

max ·θ(l ) ·PPFD0

)
ν(l )

0 = r (l )
0 ×exp

(
k(l )

T Ta0

)
5

y (l )
0 ∼ N(µ(l )

0 − ν
(l )
0 ,σ2(l )) (8)

where (l ) is not an exponent, but indicates a specific sample. Other terms are as de-
fined for Eq. (6). The m samples were used to build up the posterior predictive distri-
bution. In this way posterior predictions of GPP (µ0) and NEE (y0) were obtained. Note
that the uncertainty in the posterior predictions of GPP arose due to uncertainty in the10

posterior estimates of β. Uncertainty in the posterior prediction of NEE also considered
the uncertainty arising due to the residual error.

Prediction was performed for each 10-day sample for m = 30 000 samples (3 chains
and 10 000 samples per chain). These were then summarized (median and 95 % cred-
ible interval) to obtain the posterior predictive inference for NEE and GPP for each15

10-day block. These 95 % credible intervals show the uncertainty. We reported the
number of half-hourly NEE measurements that lie inside and outside of 95 % credible
intervals of the corresponding half-hourly modelled NEE distributions. In this way, we
checked whether realistic credible intervals were obtained. Validation against a sepa-
rate or hold-out dataset was in principle possible, but was not necessary in this study,20

because we did not use the NRH model to predict to blocks without data. Moreover, we
did not use the posterior β values outside the blocks where they were fitted.
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4 Results

4.1 Performance of MCMC

We examined the trace plots of the three Markov chains for each βi and τe obtained
for each 10-day block for both choices of informative and non-informative prior distri-
butions. Trace plots for one 10-day block (1 May to 10 May 2009) are shown in Fig. S35

in the Supplement. The chains were thoroughly interdigitating, indicating that the the
Markov chains had mixed and converged to a stationary distribution and could be used
for inference. The Gelman–Rubin PSRF was close to 1 (Table S1 in the Supplement)
for each βi and τe, providing further support for the convergence of the Markov chains.
The post burn-in samples were used for inference for each 10-day block in the growing10

season of 2009.
Figure 2 shows the posterior prediction of half-hourly NEE for a 10-day block (1 May

to 10 May 2009) for the choice of informative and non-informative prior distributions.
The half-hourly NEE was summarized by the median and the 2.5 and 97.5 % iles (i.e.,
95 % credible intervals). Out of 338 available half-hourly NEE measurements in this15

10-day block, 6 % lay outside the 95 % credible intervals for both choices of prior distri-
bution. This showed that the coverage of the 95 % credible interval was accurate. There
was no substantial difference in the shape of the percentiles curve between the choices
of prior distribution. This indicated that the choice of informative or non-informative pri-
ors did not influence the posterior prediction of NEE. Similar results were observed for20

other 10-day blocks. Over the entire 2009 growing season 94 % of the 7126 available
half-hourly NEE measurements were bracketed by the 95 % credible intervals for pos-
terior predicted NEE. The choice of informative or non-informative priors did not lead to
any substantial difference in the posterior predicted median or 95 % credible intervals.

The 10-day block shown in Fig. 2 shows that the posterior predicted median of NEE25

was positive during the day and negative during the night. This is to be expected ow-
ing to the lack of photosynthesis at night. However, at night the 95 % credible interval
spanned zero implying that, when prediction uncertainty is considered, the predicted
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NEE might be positive. This is not possible physically, so it is important to understand
how this result was achieved and what it means. Since this is a non-linear regression-
type problem the uncertainty in the prediction arises due to both the uncertainty in
the estimated regression parameters, β and the residual uncertainty. This residual un-
certainty was assumed to follow a normal distribution with zero mean and precision,5

τe, and reflects the scatter of the observations round the posterior median prediction.
Following our discussion above, this correctly represents the uncertainty in prediction.
A consequence of this was that that the prediction intervals were wide and the pre-
dictions were potentially positive during the night. This could potentially be addressed
by introducing further constraints into the model to allow τe to vary temporally (e.g.,10

Hamm et al., 2012). We leave that as a topic for future research whilst noting that our
dataset is not very large and we have already fitted a complicated model.

4.2 Uncertainty in partitioned GPP at half-hourly and daily time step

Figure 3 shows the histograms of the posterior distribution of half-hourly and daily-
summed GPP for Julian days 121 (1 May) and 196 (15 July) for the choice of both15

informative and non-informative prior distributions. These allow visualization of the un-
certainty within a day and between days for late spring and mid-summer. It is clear that
the predictions resulting from informative and non-informative priors were similar. For
both days higher values of GPP were observed in the afternoon compared to the morn-
ing on both Julian days. This reflected the increase in GPP predictions with increasing20

PPFD from morning to afternoon. The assimilation of carbon was also expected to in-
crease from the start of the growing season to the peak (summer time) of the growing
season. It was clear that higher values in GPP were predicted on Julian day 196 com-
pared to Julian day 121 for both morning and afternoon. Seasonal variation in daily
GPP was also observed in the daily sum of GPP, which increased from 7–9 gCm−2 d−1

25

on Julian day 121 to 10.5–12.5 gCm−2 d−1 on Julian day 196. Variation in daily GPP
during the 2009 growing season is shown in Fig. S4.
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4.3 Posterior distributions of β

Figure 4 and 5 show the temporal profile (mean and 95 % credible interval) for β for
each 10-day block for informative and non-informative prior β distributions respectively.

A clear seasonal pattern in the posterior distribution of α and Amax was observed.
When using non-informative priors, spikes in the 97.5 % iles for Amax were observed5

at 41, 47, and 59 mgCO2 m−2 s−1 (Fig. 5e) for three 10-day blocks (Julian days 91–
100, 281–290, and 291–300). These values are physically unrealistic (see Sect. 3.2.2).
When using informative priors, the same three 10-day blocks also showed spikes in
the 97.5 % iles for Amax (Fig. 4e); however these spikes were much smaller and were
physically realistic. For other 10-day blocks, both choices of prior yielded comparable10

posterior distributions of Amax (Figs. 4e and 5f) with uncertainty less than that of the
informative and non-informative prior distributions (Fig. 1c and Sect. 3.2.1). The poste-
rior distributions of α, r0, and kT were similar for both choices of prior distribution. The
choice of non-informative prior yielded wider credible intervals for θ compared to the
choice of informative priors (Figs. 4b and 5b).15

We calculated the sum of daily GPP for each of the above mentioned 10-day blocks
(91–100, 281–290, and 291–300) for both choices of prior (Fig. S5). We found no
significant difference in the range of GPP for each block. For example, the range of
daily-summed values for 10-day block 281–290 was 26–38 gCm−2 d−1 for both choices
of prior. This indicated that the unrealistic spikes in the posterior distributions of Amax20

did not affect the prediction of GPP.

5 Discussion

5.1 Choice of informative and non-informative prior for β

In order to undertake a Bayesian analysis it is necessary to specify the prior distribu-
tions on the NRH parameters. We compared the impact of the choice of informative25
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and non-informative priors on the posterior distributions of the NRH parameters and on
posterior prediction of GPP and NEE. The resulting posterior distributions for NEE and
GPP were similar, but for one of the parameters, notably Amax, non-informative priors
led to unrealistic values in the posterior. Such unrealistic values were not observed
when informative priors were chosen. Nevertheless, those unrealistic values did not af-5

fect the posterior predictions of GPP and NEE. This led us to evaluate the sensitivity of
GPP to Amax. We fixed the value of the NRH parameters α, θ, r0, and kT at their mean
and estimated the values of GPP (Eq. 2) by varying Amax from 0 to 100 mgCO2 m−2 s−1.
This wide variation in Amax was chosen as the non-informative priors led to spikes in
the value of Amax in the posterior (Fig. 5e).10

The plot of Amax against GPP (Fig. 6) revealed that GPP varied strongly up to Amax =
5 mgCO2 m−2 s−1. After this value GPP saturated. The underlying reason is the fact
that in light limited conditions, i.e., Amax� α×PPFD, Eq. (2) reduces to Pa = α× PPFD
and hence Pa and thus GPP becomes independent of Amax. This explains why the
GPP and NEE posterior predictions were not affected by the unrealistic values of Amax15

occurring in periods of low light intensities. The choice of prior distribution therefore
played a minimal role in the prediction of GPP. The use of informative priors, however,
constrained the estimation of the posterior distributions of the parameters.

5.2 Distributions of GPP at different time steps

We tested whether in the posterior half-hourly GPP distributions, the non-rectangular20

hyperbolic relationship of GPP with PPFD has been preserved. Figure 7 shows that for
an example 10-day period block (Julian days 121–130), posterior GPP versus PPDF.
The resulting curves shows that the non-rectangular hyperbolic relationship is indeed
preserved, and GPP values initially rise and later reach a plateau with increasing PPFD.
This is important since our daily GPP estimates were obtained by summing half-hourly25

values. Since the range of PPDF values during the day is large and the relationship
between PPFD and GPP non-linear, a realistic representation of the light response
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curve of GPP is important. We note that many process-based simulators of GPP, such
as such as BIOME-BGC, do not integrate instantaneous GPP over the diurnal cycle
to obtain daily values, but instead estimate daily GPP from averaged input values (for
example, daily average PPFD). Hence process-based simulators do not incorporate the
effects of the non-linearity of the model during the diurnal cycle (Wang et al., 2014).5

We conclude that the posterior predictions of half-hourly and daily GPP were reli-
able. We used the posterior distribution of the NRH parameters to predict half-hourly
NEE and the 95 % credible intervals bracketed 94 % of the available half-hourly NEE
measurements (Sect. 4.1 and Fig. 2). This indicated that our posterior predictions ac-
curately captured the uncertainty in the measured NEE values. We used the same10

posterior distributions of the NRH parameters to estimate uncertainty in half-hourly
GPP. Therefore, we expect that the underlying uncertainty in half-hourly GPP was also
accurate.

5.3 Estimating uncertainty using the NRH model

The Bayesian approach applied to the NRH model is a solid method to quantify the15

model parameters and their uncertainty. The 10-day block although suited for the pur-
pose of this study, is insufficient to incorporate the effects of more rapid changes (day
to day) in soil moisture and nutrient levels in the NRH model. In principle, these rapid
changes could be incorporated by daily estimation of the NRH parameters (Aubinet
et al., 2012; Gilmanov et al., 2013), although this could not be achieved in this study20

due to the lack of continuous high quality half-hourly NEE data. The temporal varia-
tion in soil moisture and nutrient level for the study site should be investigated further.
This may help to select an optimum block size where the within-block variation is lim-
ited. The availability of continuous high quality NEE data, however, may impose further
constraints on the selection of an optimum block size.25

This study excluded the effect of VPD as a limiting factor for the water stress at
the study site by following the previously published value of VPDcr (Sect. 3.1). VPDcr
varies between vegetation types and ecosystem (Lasslop et al., 2010). VPDcr should
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be defined further for Douglas fir at the study site. Higher VPD, i.e., greater than site
specific VPDcr, may produce an asymmetric shape in diurnal NEE. By incorporating
site specific VPDcr, it is expected that overestimation and underestimation of NEE will
be reduced (Fig. 2).

The implementation of the NRH model assumed that PPFD and Ta were known with-5

out error and all uncertainty was attributed to the response variables. This assumption
is useful in such statistical models, but is likely to be simple in this case. There is
scope to incorporate additional information about uncertainty in PPFD and Ta. This can
be done by defining distribution functions for PPFD and Ta in the Bayesian probability
model.10

We focused in this study on the growing season in 2009. This short period was
chosen to illustrate the implementation of the Bayesian approach to quantify the un-
certainty in half-hourly partitioned GPP using the NRH model. The study could be
extended towards multiple years thus resulting a multi-year comparison, but that is out-
side the scope of the current methodological focus. Also, different models have been15

investigated previously to partition GPP (Desai et al., 2008; Richardson et al., 2006).
Any model as its own approximation of reality is a source of systematic uncertainty
in itself. The scope of this study can therefore be further widen by addressing mul-
tiple established ways of partitioning GPP and thus analysing systematic uncertainty
associated with these.20

6 Conclusions

Quantifying uncertainty estimates as empirical distributions in half-hourly gross primary
production (GPP) was possible in a Bayesian framework using the non-rectangular
hyperbola (NRH) model. These uncertainty estimates were provided at daily time steps.
The approach could be extended to include the uncertainty in meteorological forcing, in25

particular photosynthetic photon flux density and air temperature. The distributions in
half-hourly GPP can be used further to obtain distributions at any desired time steps,
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such as 8 days and monthly. The uncertainty in GPP estimated in this study can be
used to quantify the propagated uncertainty in the validation of satellite GPP products
such as MODIS 17 or process-based simulators such as BIOME-BGC.

We also reported the uncertainty in half-hourly modelled net ecosystem exchange
(NEE). The uncertainty in NEE brackets most of the NEE measurements. It could fur-5

ther be investigated how much of the uncertainty in NEE measurements is due to
random and systematic errors using the same Bayesian framework.

The estimates of the NRH model parameters were obtained for 10-day blocks. The
values of the posterior parameters and their variation over time could provide further
understanding of how the forest responds to factors not included in the model, such as10

soil moisture, nutrition or tree age.
The study further concluded that the choice of informative and non-informative prior

distributions of the NRH model parameters led to similar posterior distributions for both
GPP and NEE. Obtaining informative priors is time consuming as the values of each
parameter are not explicitly mentioned in the literature. Informative priors also require to15

gather information on species or site specific values of photosynthetic capacity at light
saturation (Amax) and ecosystem respiration at reference temperature (r0) parameter.
As an alternative, non-informative priors can be obtained with proper constraints using
minimum information on the NRH parameters such as the positivity of Amax. Therefore,
non-informative priors should be considered, which can be used for any species type20

irrespective of study sites. These findings are valuable to conduct uncertainty analysis
across a larger sample of sites with different GPP characteristics, e.g., by obtaining
NEE and other meteorological data from the FLUXNET data base. The downside of
non-informative prior is the production of spikes in the posterior of Amax for some days
in this study. Therefore, if such values are of interest in a particular study, e.g., photo-25

synthesis nitrogen use efficiency that relies on the ratio of Amax and leaf nitrogen, then
informative prior should be considered.
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Table 1. List of symbols with unit.

NEE, y net ecosystem exchange mg CO2 m−2 s−1

Pa gross CO2 assimilation mg CO2 m−2 s−1

GPP gross primary production mg C m−2 s−1; g C m−2 s−1

Reco ecosystem respiration mg CO2 m−2 s−1

PPFD photosynthetic photon flux density µmolquantam−2 s−1

Ta air temperature ◦C
α quantum yield mgCO2 (µmolquanta)−1

θ degree of curvature of light response
curve

unitless

Amax photosynthetic capacity at light saturation mg CO2 m−2 s−1

kT temperature sensitive parameter (◦C)−1

r0 ecosystem respiration at reference tem-
perature Ta = 0 ◦C

mg CO2 m−2 s−1

τe precision of the normal distribution of the
likelihood

β (θ, α, Amax, r0, kT)
Rb ecosystem respiration at reference tem-

perature Ta = 15 ◦C
g CO2 m−2 s−1

Q10 multiplication factor to respiration with
10 ◦C increase in Ta

RH relative humidity %
VPD vapor pressure deficit kPa
VPDcr critical value of vapor pressure deficit kPa
φ vapor pressure deficit response function
σVPD curvature parameter for φ kPa
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Figure 1. Informative prior distribution of the NRH model parameters: (a) α ∼ N(µα = 0.0022,
σα = 0.00066), (b) θ ∼ Beta(shape1 = 10,shape2 = 3), (c) Amax ∼Gamma(shape = 4,rate =
2.5), (d) kT ∼Gamma(shape = 4,rate = 120), (e) r0 ∼ Beta(shape1 = 2,shape2 = 64). Informa-
tion about the NRH parameters is given in Table 1.
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Figure 2. Median (solid lines) and 95 % credible intervals (dashed lines) of the posterior distri-
bution of NEE together with half-hourly NEE measurements (solid points) for a 10-day block (1
May to 10 May 2009, Julian days 121 to 130): (a) when using informative prior distributions, (b)
when using non-informative prior distributions.
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Figure 3. Histograms of half hourly GPP (Morning and afternoon) and daily sum of GPP when
using: (a) informative priors on Julian day 121 (1 May 2009), (b) non-informative priors on Julian
day 121, (c) informative priors on Julian day 196 (15 July 2009), (d) non-informative priors on
Julian day 196. The morning and afternoon time belong to half-hour 8:00 CET to 8:30 CET and
13:00 CET to 13:30 CET respectively. The y axis is frequency; CET is Central European Time.
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Figure 4. Median (solid lines) and 95 % credible intervals (dashed lines) of the posterior distri-
butions of the NRH parameters when using informative prior distributions for each 10-day block
during the growing season in 2009. The x axis is the first Julian day of each 10-day block. The
y axis represents NRH parameter. Information about the NRH parameters is given in Table 1.
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Figure 5. As Fig. 4 when using non-informative prior distributions. To help visualization of Amax
we have added a subfigure (f) with the spikes removed (i.e., without the blocks of Julian days
91–100, 281–290, and 291–300).
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Figure 6. Variation of gross primary production (GPP) with the variation of photosynthetic ca-
pacity (Amax) from 0 to 100 mgCO2 m−2 s−1. The values of quantum yield (α), degree of curva-
ture (θ), ecosystem respiration at reference temperature (r0), and temperature sensitive param-
ete (kT) are fixed at 0.7, 0.0022, 0.1, 0.07 respectively. Air temperature (Ta) and photosynthetic
photon flux density (PPFD) are fixed at 10 ◦C and 900 µmolquantam−2 s−1.
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Figure 7. Median (solid line) and 95 % credible intervals (dashed lines) of half-hourly gross
primary production (GPP) with photosynthetic photon flux density (PPFD) for a 10-day block (1
May to 10 May 2009, Julian days 121 to 130) for the choice of informative prior distributions.
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